If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+5x=0
a = 13; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·13·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*13}=\frac{-10}{26} =-5/13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*13}=\frac{0}{26} =0 $
| (T-1)-2(t-1)=20 | | -24=1+3x | | 12x(4x+10)=54 | | 11x=63+2x | | 4y+9=7 | | K+4K=3(k+2) | | 25x^2+1=10 | | z/6+9=22 | | 10+3(x-13)=-5(1-x)+14= | | 16/6=n/15 | | k/2+3=41 | | 3/5=13/b | | K+4K=(k+2) | | 7(m-6)+(2+m)=-4+8m | | 2m=3m–6 | | 7x+22=-13 | | y^2+2y+6y=0 | | 2+125f=10-2.75f | | 2/3x+5=-3x-3 | | 8+8y=9+7+9y | | 20x+35x-9x=20+X | | -10+6f=5+3f | | 157+x=180 | | 10(x+6)=-12(x-8) | | -5(-y-2)=25 | | x=15=28 | | 1^2x-12=-3^4x+7 | | 4m+8/7=7m+5/10 | | 74-x=90-2x | | 5/2x=151/2 | | X-3-6=-5+3x | | 65-x=77-2x |